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Abstract 

 
The Space Shuttle avionics software represents a successful integration of many of the computer 

industry's most advanced software engineering practices and approaches. Beginning in the late 
1970's this software development and maintenance project has evolved one of the world's most 
mature software processes applying the principles of the highest levels of the Carnegie Mellon 
University Software Engineering Institute's Capability Maturity Model, Trusted Software 
Methodology, and ISO 9001 Standards. This software process, considered to be a "best practice" by 
many software industry organizations includes state-of-the-practice software reliability engineering  
methodologies. Life-critical Shuttle avionics software produced by this process is recognized to be 
among the highest quality and highest reliability software in operation in the world. This case study 
explores the successful use of extremely detailed fault and failure history, throughout the software 
life cycle, in the application of software reliability engineering techniques to gain insight into the 
flight-worthiness of the software and to suggest "where to look" for remaining defects. The role of 
software reliability models and failure prediction techniques is examined and explained to allow the 
use of these approaches on other software projects. One of the most important aspects of such an 
approach, "how to use and interpret the results" of the application of such techniques is addressed . 
 
Keywords: Verification and validation, software reliability measurement and prediction, safety critical 
software, risk analysis.  
      

Space Shuttle Flight Software Application 

The Space Shuttle Primary Avionics Software Subsystem (PASS) represents a successful integration of 
many of the computer industry's most advanced software engineering practices and approaches. Beginning 
in the late 1970's this software development and maintenance project has evolved one of the world's most 
mature software processes applying the principles of the highest levels of the Software Engineering Institute's 
Capability Maturity Model and ISO 9001 Standards. This software process, considered to be a "best 
practice" by many software industry organizations includes state-of-the-practice software reliability 
engineering (SRE) methodologies. Life-critical PASS produced by this process is recognized to be among 
the highest quality and highest reliability software in operation in the world. Using this application, we show 
how SRE can be applied to: interpret software reliability predictions, support verification and validation of 
the software,  assess the risk of deploying the software, predict the reliability of the software,  develop test 
strategies to bring the software into conformance with reliability specifications, and make reliability decisions 
regarding deployment of the software.  
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Reliability predictions are currently used by Lockheed-Martin Space Information Systems to add 
confidence to established positions regarding low failure probabilities for the PASS that are based on formal 
software certification processes. It is the purpose of this case study to share the experience obtained from 
the use of SRE on this project, since this application is judged by the Lockheed-Martin team to be a 
successful attempt to apply SRE to this software. The SRE techniques and concepts employed by 
Lockheed-Martin should be of value for other software systems.  
 

Interpretation of Software Reliability Predictions  
 

Successful use of statistical modeling in predicting the reliability of a software system requires a thorough 
understanding of precisely how the resulting predictions are to be interpreted and applied [9]. The PASS 
(430 KLOC) is frequently modified, at the request of NASA, to add or change capabilities using a 
constantly improving process. Each of these successive PASS versions constitutes an upgrade to the 
preceding software version. Each new version of the PASS (designated as an Operational Increment, OI) 
contains software code which has been carried forward from each of the previous versions ("previous-
version subset") as well as new code generated for that new version ("new-version subset").We have found 
that by applying a reliability model independently to the code subsets according to the following rules, we 
can  obtain satisfactory composite predictions for the total version: 
 
(1) all new code developed for a particular version uses the same development process. 
 
(2) all code introduced for the first time for a particular version is considered to have the same life and 

operational execution history 
 
(3) once new code is added to reflect new functionality in the PASS, this code is only changed thereafter to 

correct faults. 
 

It is essential to recognize that this approach requires a very accurate code change history so that every 
failure can be uniquely attributed to the version in which the defective line(s) of code  were first introduced. 
In this way it is possible to build a separate failure history for the new code in each release. To apply SRE 
to your software system  you should consider breaking your systems and processes down into smaller 
elements to which a reliability model can be more accurately applied. Using this approach, we have been 
successful in applying SRE to predict the reliability of the PASS for NASA.  
 
Estimating Execution Time  
 

We estimate execution time of segments of the PASS software by analyzing records of test cases in 
digital simulations of operational flight scenarios as well as records of actual use in Shuttle operations. Test 
case executions are only counted as "operational execution time" for previous-version subsets of the version 
being tested if the simulation fidelity very closely matches actual operational conditions. Pre-release test 
execution time for the new code actually being tested in a version is never counted as operational execution 
time.  We use the failure history and operational execution time history for the new-code subset of each 
version to generate an individual reliability prediction for that new code in each version by separate 
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applications of the reliability model. This approach places every line of code in the total PASS into one of 
the subsets of "newly" developed code, whether "new" for  the original version or any subsequent version. 
We then represent the total reliability of the entire  software system as that of a composite system of 
separate components ("new-code subsets"), each having an individual execution history and reliability, 
connected in series. Lockheed-Martin is currently using this approach to apply the Schneidewind [8,9] 
model as a means of predicting a "conservative lower bound" for the PASS reliability. 
 
Interpretations and Credibility  
 

The two most critical factors in establishing credibility in software reliability predictions are the validation 
method and the way the predictions are interpreted. For example, a "conservative" prediction can be 
interpreted as providing an "additional margin of confidence" in the software reliability, if that predicted 
reliability already exceeds an established "acceptable level" or requirement. You may not be able to validate 
that you can predict the reliability of your software precisely, but you can demonstrate that with "high  
confidence" you can predict a lower bound on the reliability of that software within a specified environment. 
If you can use historical failure data at a series of previous dates (and you have the actual data for the failure 
history following those dates), you should be able to compare the predictions to the actual reliability and 
evaluate the performance of the model(s) used. You should take all these factors into consideration as you 
establish validation success criteria. This will also significantly enhance the credibility of your predictions 
among  those who must make decisions based on your results. 
 

Verification and Validation 
 

Software reliability measurement and prediction are useful approaches to verify and validate software. 
Measurement refers to collecting and analyzing data about the observed reliability of software, for example 
the occurrence of failures during test. Prediction refers to using a model to forecast future software 
reliability, for example failure rate during operation. Measurement also provides the failure data that is used 
to estimate the parameters of reliability models (i.e., make the best fit of the model to the observed failure 
data). Once the parameters have been estimated, the model is used to predict the future reliability of the 
software. Verification ensures that the software product, as it exists in a given project phase, satisfies the 
conditions imposed in the preceding phase (e.g., reliability measurements of safety critical software 
components obtained during test conform to reliability specifications made during design) [5]. Validation 
ensures that the software product, as it exists in a given project phase, which could be the end of the 
project, satisfies requirements (e.g., software reliability predictions obtained during test correspond to the 
reliability specified in the requirements) [5].  
 

Another way to interpret verification and validation is that it builds confidence that software is ready to 
be released for operational use. The release decision is crucial for systems in which software failures could 
endanger the safety of the mission and crew (i.e., safety critical software). To assist in making an informed 
decision, we integrate software risk analysis and reliability prediction, and we are evaluating stopping rules 
for testing. This approach is applicable to all safety critical software. Improvements in the reliability of  
software, where the reliability measurements and predictions are directly related to mission and safety, 
contribute to system safety. 
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Reliability Measurements and Predictions  
 

There are a number of measurements and predictions that can be made of reliability to verify and 
validate the software. Among these are remaining failures, maximum failures, total test time required to 
attain a given fraction of remaining failures, and time to next failure. These have been shown to be 
useful measurements and predictions for: 1) providing confidence that the software has achieved reliability 
goals; 2)  rationalizing how long to test a software component (e.g., testing sufficiently long to verify that the 
measured reliability conforms to design specifications); and 3) analyzing the risk of not achieving remaining 
failure and time to next failure goals [6]. Having predictions of the extent to which the software is not fault 
free (remaining failures) and whether a failure it is likely to occur during a mission (time to next failure) 
provide criteria for assessing the risk of deploying the software. Furthermore, fraction of remaining 
failures can be used as both an operational quality goal in predicting total test time requirements and, 
conversely, as an indicator of operational quality as a function of total test time expended [6]. 
 

The various software reliability measurements and predictions can be divided into the following two 
categories to use in combination to assist in assuring the desired level of reliability  of the software in safety 
critical systems like the PASS. The two categories are: 1) measurements and predictions that are associated 
with residual software faults and failures, and 2) measurements and predictions that are associated with the 
ability of the software to complete a mission without experiencing a failure of a specified severity. In the first 
category are: remaining failures, maximum failures,  fraction of remaining failures, and total test time 
required to attain a given number or fraction of remaining failures. In the second category are: time to 
next failure and total test time required to attain a given time to next failure. In addition, there is the 
risk associated with not attaining the required remaining failures and time to next failure. Lastly, there is 
operational quality that is derived from fraction of remaining failures. With this type of information a 
software manager can determine whether more testing is warranted or whether the software is sufficiently 
tested to allow its release or unrestricted use. These predictions provide a quantitative basis for achieving  
reliability goals [2]. 
 

Risk Assessment 
 

 Safety Risk pertains to executing the software of a safety critical system where there is the chance of 
injury (e.g., astronaut injury or fatality), damage (e.g., destruction of the Shuttle), or loss (e.g., loss of the 
mission)  if a serious software failure occurs during a mission. In the case of the Shuttle PASS, where the 
occurrence of even trivial failures is extremely rare, the fraction of those failures that pose any safety or 
mission success impact is too small to be statistically significant. As a result, for this approach to be feasible, 
all failures (of any severity) over the entire 20-year life of the project have been included in the failure history 
database for this analysis. Therefore, the risk criterion metrics to be discussed for the Shuttle quantify the 
degree of risk associated with the occurrence of any software failure, no matter how insignificant it may be. 
The approach used can be applied to Safety Risk where sufficient data exist.  



 

  
We are experimenting with an algorithm, which uses of the Schneidewind Software Reliability Model 

to compute a parameter: fraction of remaining failures as a function of the archived failure history during 
test and operation [6]. The prediction methodology uses this parameter and other reliability quantities to 
provide bounds on total test time, remaining failures, operational quality, and time to next failure that 
are necessary to meet arbitrarily defined Shuttle software reliability levels. The total test time versus 
fraction of remaining failures  curve shows a pronounced asymptotic characteristic that indicates the 
possibility of big gains in reliability as testing continues; eventually the gains become marginal as testing 
continues.  
 
  Two criteria for software reliability levels will be defined. Then these criteria will be applied to the risk 
analysis of safety critical software, using the PASS as an example. In the case of the Shuttle example, the 
"risk" will represent the degree to which the occurrence of failures does not meet required reliability  levels, 
regardless of how insignificant the failures may be.  Next, a variety of prediction equations that are used in 
reliability prediction and risk analysis will be defined and derived; included is the relationship between time 
to next failure and reduction in remaining failures. Then it is shown how the prediction equations can be 
used to integrate testing with reliability and quality. An example is shown of how the risk analysis and 
reliability predictions can be used to make decisions about whether the software is ready to deploy; this 
approach could be used to determine whether a software system is safe to deploy. 
 

 Criteria for Reliability 
 

If the reliability  goal is the reduction of failures of a specified severity to an acceptable level of risk [7], 
then for software to be ready to deploy, after having been tested for total time tt, it must satisfy the following 
criteria: 
 
1) predicted remaining failures r(tt)<rc,       (1) 
where rc is a specified critical value , and 
 
2) predicted time to next failure TF(tt)>tm,      (2) 
where tm is mission duration. The total time tt could represent a Safe/Unsafe criterion, or the time to remove 
all faults regardless of severity (as used in the Shuttle example).  
 

For systems that are tested and operated continuously like the Shuttle, tt, TF(tt), and tm are measured in 
execution time. Note that, as with any  methodology for assuring software reliability, there is no guarantee 
that the expected level will be achieved. Rather, with these criteria, the objective is  to reduce the risk of 
deploying the software to a "desired" level. 
 



 

Remaining Failures Criterion 
 

Using the  assumption  that the faults that cause failures are removed (this is the case for the Shuttle), 
criterion 1 specifies that the residual failures and faults must be reduced to a level where the risk of 
operating the software is acceptable. As a practical matter, rc=1 is suggested. That is, the goal is to reduce 
the expected remaining failures of a specified severity to less than one before deploying the software. The 
assumption for this choice is that one or more remaining failures would constitute an undesirable risk of 
failures of the specified severity. Thus, one way to specify rc is by failure severity level (e.g., include) only life 
threatening failures). Another way, which imposes a more demanding criterion, is to specify that rc 
represents all severity level, as in the Shuttle example. For example, r(tt)<1 would mean that r(tt) must be 
less than one failure, independent of severity level. 
 

If r(tt)≥rc is predicted, testing would continue for a total time tt'>tt that is predicted to achieve r(tt')<rc, 
using the assumption that more failures will be experienced and more faults will be corrected so that the 
remaining failures will be reduced by the quantity r(tt)-r(tt'). If the developer does not have the resources 
to satisfy the criterion or is unable to satisfy the criterion through additional testing, the risk of deploying the 
software prematurely should be assessed (see the next section). It is known that it is impossible to 
demonstrate the absence of faults [3]; however,  the risk of failures occurring can be reduced to an 
acceptable level, as represented by rc. This scenario is shown in Figure 1. In case A r(tt)<rc is predicted and 
the mission begins at tt. In case B r(tt)≥rc is predicted and the mission would be postponed until the software 
is tested for total time tt' when r(tt')<rc is predicted. In both cases, criterion 2) would also be required for 
the mission to begin. 
 
Time to Next Failure Criterion 
 

Criterion 2 specifies that the software must survive for a time greater than the duration of the mission. If 
 TF(tt)≤tm, is predicted, the software is tested for a total time tt''>tt that is predicted to achieve TF(tt")>tm, 
using the assumption that more failures will be experienced and faults corrected so that the time to next 
failure will be increased by the quantity TF(tt")-TF(tt). Again, if it is infeasible for the developer to satisfy the 
criterion for lack of resources or failure to achieve test objectives, the risk of deploying the software 
prematurely should be assessed (see the next section). This scenario is shown in Figure 2. In case A 
TF(tt)>tm is predicted and the mission begins at tt. In case B TF(tt)≤tm is predicted and in this case the 
mission would be postponed until the software is tested for total time tt'' when TF(tt")>tm is predicted. In 
both cases criterion 1) would also be required for the mission to begin. If neither criterion is satisfied, the 
software is tested for a time which is the greater of tt' or tt''. 
 
Total Test Time  
 

The amount of total test time tt can be considered a measure of the degree to which  software 
reliability goals have been achieved. This is particularly the case for systems like the Shuttle where the 
software is subjected to continuous and rigorous testing for several years in multiple facilities, using a variety 
of operational and training scenarios (e.g., by Lockheed-Martin in Houston, by NASA in Houston for 
astronaut training, and by NASA at Cape Canaveral). We can view tt as an input to a risk reduction 



 

process, and r(tt) and TF(tt) as the outputs, with rc and tm as "risk criteria levels" of reliability  that control the 
process. While it must be recognized that total test time is not the only consideration in developing test 
strategies and that there are other important factors, like the consequences for reliability and cost, in 
selecting test cases [11] nevertheless, for the foregoing reasons, total test time has been found to be 
strongly  positively correlated with reliability growth for the Shuttle [9].  
 
Remaining Failures  
 

The mean value of the risk criterion metric (RCM) for criterion 1 is formulated as follows: 
RCM r(tt)= (r(tt)-rc)/rc=(r(tt)/rc)-1                    (3) 
 

Equation (3) is plotted in Figure 3 as a function of tt for rc=1, where positive, zero, and negative values 
correspond to r(tt)>rc, r(tt)=rc, and r(tt)<rc, respectively. In Figure 3, these values correspond to the 
following regions: CRITICAL (i.e., above the X-axis predicted remaining failures are greater than the 
specified value); NEUTRAL (i.e., on the X-axis predicted remaining failures are equal to the specified 
value); and DESIRED (i.e., below the X-axis predicted remaining failures are less than the specified 
value, which could represent a "safe" threshold or in the Shuttle example, an "error-free" condition 
boundary). This graph is for the  Shuttle Operational Increment OID (with many years of shelf life): a 
software system comprised of modules and configured from a series of builds to meet Shuttle mission 
functional requirements.  In this example, it can be seen  that at approximately tt=57 the risk transitions from 
the CRITICAL region to the DESIRED region. 
 
Time to Next Failure  
 

Similarly, the mean value of the risk criterion metric (RCM) for criterion 2 is formulated as follows: 
 
RCM TF(tt)=(tm-TF(tt))/tm=1-(TF(tt))/tm       (4) 
 
Equation (4) is plotted in Figure 4 as a function of tt for tm=8 days (a typical mission duration time for this 
OI), where positive, zero, and negative risk corresponds to TF(tt)<tm, TF(tt)=tm, and TF(tt)>tm,  
respectively.  In Figure 4, these values correspond to the following regions: CRITICAL (i.e., above the X-
axis predicted time to next failure is less than the specified value); NEUTRAL (i.e., on the X-axis 
predicted time to next failure is equal to the specified value); and DESIRED (i.e., below the X-axis 
predicted time to next failure is greater than the specified value). This graph is for the Shuttle operational 
increment OIC. In this example the RCM is in the DESIRED region at all values of tt.  

 
Approach to Prediction 

 
In order to support the reliability goal and to assess the risk of deploying the software, various reliability 

and quality predictions are made during the test phase to validate that the software meets requirements. For 
example, suppose the software reliability requirements state the following: 1) ideally, after testing the 
software for  total test time tt, the predicted remaining  failures shall be less than one; 2) if the ideal of 1) 
cannot be achieved due to cost and schedule constraints, time to next failure, predicted after testing for 



 

total test time tt, shall exceed the mission duration; and 3) the risk of not meeting 1) and 2) shall be 
assessed. Thus, this approach uses a software reliability model to predict the following: 1) maximum 
failures, remaining  failures, and operational quality (as defined in the next section); 2) time to next 
failure (beyond the last observed failure); 3) total test time necessary to achieve required levels of 
remaining failures (fault) level, operational quality, and time to next failure; and 4) tradeoffs between 
increases in levels of reliability and quality with increases in testing (i.e., cost of testing). 
 

An important concept to note is that reliability will be measured during test; that is, failure data will be 
collected for two purposes: 1) to verify that the observed data conform to the reliability specified during 
design and 2) to provide data for reliability parameter estimation. With regard to 1), the observed time to 
next failure can be compared to the specified quantity. However, in contrast, observed remaining failures 
and maximum failures have no meaning because we don't know how many remaining failures (faults) 
there are at a given time during the life of the software and we don't know the maximum failures that will 
have occurred at the end of the life of the software. Thus remaining failures and maximum failures only 
have meaning as predicted quantities. However, we can make approximations to these quantities for model 
validation purposes (see the Summary of Predictions section). 

 
Prediction Equations  

 
In order to consider the risk of deploying the PASS, various predictions have been made based on the 

Schneidewind Software Reliability Model [1, 8, 9, 10], one of the four models recommended in the 
ANSI/AIAA Recommended Practice for Software Reliability [1].  The equations are derived in the next 
section. They  have been applied to analyze the reliability of the PASS based on the approach 
recommended herein. The Statistical Modeling and Estimation of Reliability Functions for Software 
(SMERFS) [4] is used for all predictions except tt, which is not implemented in SMERFS.   
 

Because the PASS is run continuously, around the clock, in simulation, test, or flight, "time" refers to 
continuous execution time and total test time refers to execution time that is used for testing.  Failure count 
intervals are equal length periods of continuous execution time.  
 

 In the following equations, parameter a is the failure rate at the beginning of  interval s; parameter ß is 
the negative of the derivative of failure rate divided by failure rate (i.e., relative failure rate); t is the last 
interval of observed failure data; s is the starting interval for using observed failure data in parameter 
estimation that provides the best estimates of a and ß and the most accurate predictions [8]; Xs-1 is the 
observed  failure  count  in  the  range  [1,s-1]; Xs,t is the observed failure count in the range [s,t];  and  
Xt=Xs-1+Xs,t. Failures are counted against operational increments (OIs). Data from  four Shuttle OI's, 
designated OIA, OIB, OIC, and OID are used in this analysis example.  
 
 Cumulative Failures 
 

When estimates are obtained for the parameters a and ß, with s as the starting interval for using 
observed failure data, the predicted failure count in the range [s,t] is obtained: 
 



 

Fs,t=(a/ß)[1-exp(-ß((t-s+1)))]        (5)  
 
Furthermore, if Xs-1, the observed failure count in the range [1,s-1], is added to equation (5), the predicted 
failure count in the range [1, t] is obtained: 
 
F(t)=(a/ß)[1-exp(-ß((t-s+1)))]+Xs-1       (6)  
 
Failures in an Interval Range 
 

Let t=t2 and subtract  Xt1=Xs-1+Xs,t1, the observed failure count in the range [1,t1], from equation  (6 ), 
then obtain the predicted  failure count in the range [t1,t2]: 
 
F(t1,t2)=(a/ß)[1-exp(-ß((t2-s+1)))]-Xs,t1       (7)  
 
 Maximum Failures 
 

Let t=∞ in equation (6 ) and obtain the predicted  failure count in the range [1,∞] (i.e., maximum 
failures over the life of the software): 
 
F(∞)=a/ß+Xs-1           (8) 
 
Remaining Failures  
 

To obtain predicted remaining failures r(t) at time t, subtract  Xt=Xs-1+Xs,t from equation (8):  
 

r(t)=(a/ß)-Xs,t=F(∞)-Xt         (9) 
 

r(t) can also be expressed as a function of total test time tt by substituting equation (5) for Xs,t in 
equation (9) and letting t=tt: 
 
r(tt)=(a/ß)(exp-ß[tt-(s-1)])         (10) 
 
Fraction of Remaining Failures 
 

If equation (9) is divided by equation (8), fraction of remaining failures, predicted at time t is 
obtained: 
 
p(t)=r(t)/F(∞)          (11) 
 
Operational Quality 
 

The operational quality of software is the complement of p(t). It is the degree to which software is free 
of remaining faults (failures), using the assumption that the faults that cause failures are removed. It is 



 

predicted at time t as follows: 
 
Q(t)=1-p(t)          (12) 
 
 
Total Test Time to Achieve Specified Remaining Failures 
 

The predicted total test time required to achieve a specified number of remaining failures at tt, r(tt), 

is obtained from equation (10) by solving for tt: 
 
Time to Next Failure  
 

By substituting t2=t+TF(t) in equation (7), letting t1=t, defining Ft=F(t,t+TF),and solving for TF(t), the 

predicted time for the next Ft failures to occur, when the current time is t, is obtained :  
 
The terms in TF(t) have the following definitions: 
  
t:  Current interval; 
Xs,t: Observed failure count in the range [s,t]; and 
Ft:  Given number of failures to occur after interval t. 
 

Equations (5)-(11) and (14) are predictors of reliability that can be related to safety or, as in the Shuttle 
example, the error-free condition of the software; equation (13) represents the predicted total test time 
required to achieve stated reliability goals. If a quality requirement is stated in terms of fraction of 
remaining failures, the definition of Q as Operational Quality, equation (12), is the degree to which the 
software meets specified requirements [7]. For example, if a reliability specification requires that software is 
to have no more that 5% remaining failures  (i.e., p=.05, Q=.95) after testing for a total of tt intervals, then a 
predicted Q of .90 would indicate the degree to which the software meets the requirement.     

 
Relating Testing to Reliability and Quality 

 
Predicting Total Test Time and Remaining Failures  
 

The tradeoff between testing and reliability can be analyzed by first using equation (8) to predict 
maximum failures (F(∞)=11.76 for Shuttle OIA). Then, using given values of p and equation (11) and 

=[log[ /( [r( )])]]/ +(s 1)t tt tα β β −            (13)   

(t)=[(log[ /( ( + )])/ ] (t s+1)T X FF s,t t
 

for ( / ) > ( + )X Fs,t t

α α β β

α β

− − −

         (14)   



 

letting t=tt, r(tt) is predicted for each value of p. The values of r(tt) are the predictions of remaining failures 
after the OI has been executed for total test time tt. Next, the values of r(tt) and equation (13) are used to 
predict corresponding values of tt. The results are shown in Figure 5, where r(tt) and tt are plotted against p 
for OIA. Note that required total test time tt rises very rapidly at small values of p and r(tt). Also note that 
the maximum value of p on the plot corresponds to tt=18 and that smaller values correspond to future 
values of tt (i.e., tt>18). 
 
Predicting Operational Quality 
 

Similarly, the tradeoff between testing and quality can be analyzed by using equation (12), which is a 
useful measure of the operational quality of software because it measures the degree to which faults have 
been removed from the software (using the assumption  that the faults that cause failures are removed), 
relative to predicted maximum failures. This type of quality is called operational (i.e., based on executing 
the software) to distinguish it from static quality (e.g., based on the complexity of the software). Using given 
values of p and equations (11) and (12) and letting t=tt, r(tt) and Q are computed, respectively. The values 
of r(tt) are then used in equation (13) to compute tt. Like equation (12), equation (13) has the asymptotic 
property of a great amount of testing required to achieve high levels of quality. 

 
Making Reliability Decisions  

 
In making the decision about how long to test, tt, the reliability  criteria and risk assessment approach 

can be applied. Table 1 is used to illustrate the process. For tt=18 (when the last failure occurred on OIA), 
rc=1, and tm=8 days (.267 intervals),  remaining failures, RCM  for remaining failures, time to next 
failure, RCM for time to next failure, and operational quality are shown. These results indicate that 
criterion 2 is satisfied but not criterion 1 (i.e., CRITICAL with respect to remaining failures); also 
operational quality is low. 
 

By looking at Table 1, it can be seen that if remaining failures r(18) are reduced by 1 from 4.76 to 
3.76 (non-integer values are possible because the predictions are mean values), the predicted time to next 
failure that would be achieved is TF(18)=3.87 intervals. These predictions satisfy criterion 2 (i.e., 
TF(18)=3.87>tm=.267) but not criterion 1 (i.e., r(18)=4.76>rc=1). Note also in  Table 1 that fraction of 
remaining failures p=1-Q=.40 at r(18)=4.76. Now, if testing is continued for a total time tt=52 intervals, 
as shown in Table 1, and remaining failures are reduced from 4.76 to .60, the predicted time to next 
4.16 failures that would be achieved is 33.94 (34, rounded) intervals. This corresponds to tt=18+34=52 
intervals. That is, if  testing is continued for an additional 34 intervals, starting at interval 18, another 4.16 
failures would be expected. These predictions now satisfy criterion 1 because r(52)=.60<rc=1. Note also 
in Table 1 that fraction of remaining failures p=1-Q=.05 at r(52)=.60. Using the converse of the 
relationship, provides another perspective, where, if testing is continued for an additional TF=34 intervals, 
starting at interval 18, the predicted reduction in remaining failures that would be achieved is 4.16 or r 
(52)=. 60. 

 
Lastly, Figure 6 shows the Deployment Decision, relevant to the Shuttle (which could be the Launch 

Decision relative to the Shuttle), where remaining failures are plotted against total test time for OIA. 



 

With these results in hand, the software manager can decide whether to deploy the software based on 
factors such as predicted remaining failures, as shown in Figure 6, along with considering other factors 
such as the trend in reported faults over time, inspection results, etc.. If testing were to continue until tt=52, 
the predictions in Figure 6 and Table 1 would be obtained. These results show that criterion 1 is now 
satisfied (i.e., DESIRED) and operational quality is high. Figure 6 also shows that at tt=52,  further  
increases would not result in a significant increase in reliability. Also note that at tt=52 it is not feasible to 
make a prediction of TF(52) because the predicted remaining failures is less than one. 

 
 

Table 1. Reliability Criteria Assessment of OIA 
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* Cannot predict because predicted Remaining Failures is less than one. 

 
Summary of Predictions   

Table 2 shows a summary of remaining and maximum failure predictions compared with actual failure 
data, where available, for OIA, OIB, OIC, and OID. The purpose of this analysis is to validate the model for 
Shuttle applications. Because actual remaining and maximum failures are unknown, the assumption is used: 
that remaining failures are "zero" for those OI's (B, C, and D) that were executed for extremely long times 
(years) with no additional failure reports; correspondingly, for these OI's,  the assumption is used that 
maximum failures equals total observed failures. 



 

 
 

Table 2. Predicted Remaining and Maximum Failures versus Actuals 
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Time of  last recorded failure : 
A. No additional failures have been reported after 17.17 intervals for OIA. 
B. The last recorded failure occurred at  63.67 intervals for OIB. 
C. The last recorded failure occurred at 43.80 intervals for OIC. 
D. The last recorded failure occurred at 65.03 intervals for OID. 

 
Table 3 shows a summary of total test time and time to next failure predictions compared with actual 

execution time data, where available, for OIA, OIB, OIC, and OID.  
 

 
Table 3. Predicted Total Test Time and Time to Next Failure versus Actuals 
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* Cannot predict because predicted Remaining Failures is less than one. 
Additional Predictions for OID: 
The following are additional predictions of total test time for OID that are not listed in 
Table 3: tt(r=2)=43.35, Actual=45.17; tt(r=3)=35.47, Actual=23.70. 

 
 

 



 

Lessons Learned 

Several important lessons have been learned from our experience of twenty years in developing and 
maintaining the PASS, which you could consider for adoption in your SRE process:  
 
1) No one SRE process method is the "silver bullet" for achieving high reliability. Various methods, including 
formal inspections, failure modes analysis, verification and validation, testing, statistical process management, 
risk analysis, and reliability modeling and prediction must be integrated and applied. 
 
2) The process must be continually improved and upgraded. For example, recent experiments with software 
metrics have demonstrated the potential of using metrics as early indicators of future reliability problems. 
This approach, combined with inspections, allows many reliability problems to be identified and resolved 
prior to testing.  
 
3) The process must have feedback loops so that information about reliability problems discovered during 
inspection and testing is fed back not only to requirements analysis and design for the purpose of improving 
the reliability of future products but also to the requirements analysis, design, inspection and testing 
processes themselves. In other words the feedback is designed to improve not only the product but also the 
processes that produce the product. 
 
4) Given the current state-of-the-practice in software reliability modeling and prediction, practitioners should 
not view reliability models as having the ability to make highly accurate predictions of future software 
reliability. Rather, software managers should interpret these predictions in two significant ways: a) providing 
increased confidence, when used as part of an integrated SRE process, that the software is safe to deploy; 
and 2) providing bounds on the reliability of the deployed software (e.g., high confidence that in operation 
the time to next failure will exceed the predicted value and the predicted value will safely exceed the mission 
duration).   
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Figure 1. Remaining Failures Criterion Scenario
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